
builders
Release 1.2.8

March 16, 2015

Contents

1 Frequently Asked Questions 3
1.1 How do I... 3

2 Basic tutorial 5
2.1 Describing data model . 5
2.2 Building model instance . 6
2.3 Modifying a tree . 7

3 builders Package 9
3.1 builder Module . 9
3.2 construct Module . 9
3.3 modifiers Module . 11

4 Indices and tables 15

Python Module Index 17

i

ii

builders, Release 1.2.8

builders is a small and lightweight framework created to facilitate creation of complex test data for systems with
complicated and intermingled data model.

See Basic tutorial for a jump-start.

Contents:

Contents 1

builders, Release 1.2.8

2 Contents

CHAPTER 1

Frequently Asked Questions

This is a list of Frequently Asked Questions about builders. Feel free to suggest new entries!

1.1 How do I...

... set backrefs? Use builders.construct.Uplink.

... simplify InstanceModifier? Use builders.modifiers.ValuesMixin.

... inherit model classes from other model classes? At your own risk.

... make sure my random ID’s dont collide? Use builders.construct.Key around your Random

... reuse the modifiers? They can be placed in a list and fed to the builder like this:

big_engine = InstanceModifier(Engine).thatSets(hp=1500)
big_wheels = InstanceModifier(Wheel).thatSets(size=25)

monster_car = [big_engine, big_wheels, InstanceModifier(Body).thatSets(color=’red’)]

my_monster = Builder(Car).withA(monster_car).build() # indeed it is

... build something with a circular dependency? Add a proper InstanceModifier().thatDoes() to set
non-tree-like references.

3

builders, Release 1.2.8

4 Chapter 1. Frequently Asked Questions

CHAPTER 2

Basic tutorial

builders is intended to facilitate test data creation and achieves it per two major capabilities:

• Describing data structure via class-like model

• Building of a particular finely-configured data set

2.1 Describing data model

Data models are commonly considered as large trees of crossreferenced objects.

For example, to describe a decomposition of a convenient automobile one might draw something like that:

car

engine body gearbox wheels

left_seat right_seat wheel_A wheel_B wheel_C wheel_D

The diagram declares that car consists of engine, gearbox, body and a set of wheels, completely ommiting the proper-
ties of each object.

Same can be described with builders as follows:

from builders.construct import Unique, Collection, Random

class Engine:
hp = 100
type = ’steam’

class Gearbox:
gears = 4
type = ’manual’

5

builders, Release 1.2.8

class Seat:
material = ’leather’

class Body:
color = ’blue’
left_seat = Unique(Seat)
right_seat = Unique(Seat)

class Wheel:
size = 14
threading = ’diagonal’
type = ’winter_spiked’

class Car:
make = ’ford’
year_of_make = Random(1990, 2005)

engine = Unique(Engine)
gearbox = Unique(Gearbox)
body = Unique(Body)
wheels = Collection(Wheel, number=4)

The example is mostly self-describing. However, note:

• each data model type has its own python class as a representation

• default attribute values are given in the classes in primitives

• references to other model types are declared via Construct attributes

• there is no explicit root element or mandatory base classes

2.2 Building model instance

Long story short, building the model is as easy as:

from builders.builder import Builder

my_car = Builder(Car).build()

isinstance(my_car, Car) # True
my_car.engine.hp == 100 # True
len(my_car.wheels) # 4
type(my_car.wheels) # list
my_car.wheels[0] == my_car.wheels[1] # False, these are different wheels
1990 <= my_car.year_of_make <= 2005 # True, exact value of year_of_make varies

How this works? Builder recursevily walks over the tree starting with Car and instantiates model classes.

When a class instance is created, each attribute that is a Construct has its build method called. The resulting
value is then assigned to that attribute of a built instance.

The Unique builds a single new instance of given type thus performing recursion step. Collection builds a
number of new instances and puts them in a list.

There are several other useful constructs:

• builders.construct.Random generate a random number or string

6 Chapter 2. Basic tutorial

builders, Release 1.2.8

• builders.construct.Uid generates a new UUID

• builders.construct.Reused works like Unique, but caches built values

• builders.construct.Maybe builds a nested construct in a certain conditions

• builders.construct.Lambda runs passed function with instance being constructed as parameter every
time object is built

All the built-in constructs can be found at builders.construct. Custom constructs may be derived from
builders.construct.Construct.

2.3 Modifying a tree

To build non-default model (and thats what you need most of the time) just apply some Modifiers to the tree like
this:

from builders.modifiers import InstanceModifier, NumberOf

my_car = Builder(Car).withA(NumberOf(Car.wheels, 5)).build()

len(my_car.wheels) # 5, we told it to be so

my_car = Builder(Car).withA(InstanceModifier(Seat).thatSets(material=’fabric’)).build()

my_car.body.left_seat.material # ’fabric’
my_car.body.right_seat.material # ’fabric’

The withA method accepts a number of modifiers and returns same Builder for the sake of chaining:

from builders.modifiers import InstanceModifier, NumberOf

Builder(Car).withA(NumberOf(Car.wheels, 5)).withA(InstanceModifier(Engine).thatSets(hp=’over_9000’)).withA(InstanceModifier(Body).thatSets(color=’red’)).build()

Obviously, configured builder can be used again to produce a another one similar car.

Useful built-in modifiers are:

• builders.modifiers.InstanceModifier factory that makes fancy thatDoes, thatSets and
thatSetsCarefully modifiers,

• builders.modifiers.NumberOf that sets Collection sizes

• builders.modifiers.OneOf that modifies a Collection entry

• builders.modifiers.Enabled that turns on builders.construct.Maybe

• builders.modifiers.LambdaModifier replaces default function in
builders.construct.Lambda with a given one

• builders.modifiers.Another adds one more element to a Collection with given modifiers

All the built-in modifiers can be found in builders.modifiers.

2.3. Modifying a tree 7

builders, Release 1.2.8

8 Chapter 2. Basic tutorial

CHAPTER 3

builders Package

3.1 builder Module

class builders.builder.Builder(clazzToBuild)
Main interface class for the builders package.

For example:

class Bar:
bar = 1

class Foo:
baz = 10
bars = Collection(Bar)

my_foo = Builder(Foo).withA(NumberOf(Foo.bars, 5)).build()

build()
Build the resulting instance with the respect of all of the previously applied modifiers.

withA(*modifiers)

Parameters modifiers – list of modifiers to apply

Apply a number of modifiers to this builder. Each modifier can be either a single
builders.modifiers.Modifier or a nested list structure of them.

Modifiers are stored in the builder and executed on the build call.

builders.builder.flatten(l)

Parameters l – iterable to flatten

Generator that flattens iterable infinitely. If an item is iterable, flatten descends on it. If it is callable, it
descends on the call result (with no arguments), and it yields the item itself otherwise.

3.2 construct Module

class builders.construct.Construct
Bases: builders.construct.Link

Base class for build-generated attributes. Subclasses should implement doBuild method.

9

builders, Release 1.2.8

build(*args, **kwargs)
Called by builders.builder.Builder on the model construction. Returns actual pre-set value (via
Link mechanism) or a newly built one.

class builders.construct.Predefined(value)
Bases: builders.construct.Construct

Builds to a predefined value.

class builders.construct.Unique(typeToBuild)
Bases: builders.construct.Construct

Builds a new instance of type with a separate builders.Builder with respect to currently active modi-
fiers.

class builders.construct.Collection(typeToBuild, number=1)
Bases: builders.construct.Unique

Builds a list of new typeToBuild objects. With no modifiers, list will contain number entries.

class builders.construct.Reused(typeToBuild, local=False, keys=[])
Bases: builders.construct.Unique

Like Unique, but with caching.

Stores all the built instances within a dictionary. If the would-be-new-instance has key equal to some of the
objects in cache, cached object is returned.

Key is a tuple of typeToBuild and selected attribute values.

Parameters

• local – keep cache in the Reused instance. If false, cache is global (eww).

• keys – list of attributes that are considered key components along with the typeToBuild.

class builders.construct.Random(start=1, end=100500, pattern=None)
Bases: builders.construct.Construct

Parameters

• start – random interval start

• end – random interval end

• pattern – a string %-pattern with single non-positional argument

A construct that results in a random integer or random string. If pattern is present, it is formatted with the
random value.

class builders.construct.Maybe(construct, enabled=False)
Bases: builders.construct.Construct

Returns result of nested construct if enabled.

See builders.modifiers.Enabled to turn it on.

class builders.construct.Uplink(reusing_by=[])
Bases: builders.construct.Construct

Becomes a value of another Construct when it is build.

Call linksTo on Uplink object to set destination.

Supplying reusing_by emulates Reused behavior with given keys.

10 Chapter 3. builders Package

builders, Release 1.2.8

Warning: reusing_by is not fully operational at the moment, use at your own risk. See
test_uplink.test_reuse – there are commented checks.

class builders.construct.Uid
Bases: builders.construct.Construct

Builds to a string with a fresh uuid.uuid4()

class builders.construct.Key(value_construct)
Bases: builders.construct.Construct

Tries to obtain fresh items from value_construct upon build via checking new item against all the previ-
ously built ones.

Raises Exception if it fails to get a non-used value after a meaningful number of attempts.

Intended to be used with Random to prevent key collisions like:

class MyFoo:
id = Key(Random())

class builders.construct.Lambda(functionToExecute)
Bases: builders.construct.Construct

Function, executed during each build with an instance being constructed passed in as parameter

3.3 modifiers Module

class builders.modifiers.Modifier
Bases: object

Base class for build process modifiers. Child classes should implement apply method.

apply(*args, **kwargs)
Perform the actual modification. kwargs can contain different parameters – modifier is encouraged to
check actual values supplied. See builders.builder.Builder to find out how this is invoked.

shouldRun(*args, **kwargs)
Determines if the modifier should run on this particular occasion

Parameters are similar to the apply method

class builders.modifiers.InstanceModifier(classToRunOn)
Modifier factory that builds new modifiers to act upon instances of classToRunOn.

InstanceModifier(foo).thatDoes(bar) returns modifier that calls bar(x) on the foo istances x

InstanceModifier(foo).thatSets(a=1, b=2) returns modifier that sets foo instance attributes a
to 1 and b to 2

InstanceModifier(foo).thatCarefullySets(c=2) returns modifier that sets foo instance at-
tributes c to 2 if that instance already has c attribute and raises exception if it does not

thatCarefullySets(**kwargs)
as thatSets factory method, but asserts that attribute exists

thatDoes(action)
factory method that builds an instance backed by a given callable action

thatSets(**kwargs)
factory method that builds a modifier that sets given kwargs as attributes for the instance

3.3. modifiers Module 11

builders, Release 1.2.8

class builders.modifiers.ValuesMixin
Bases: object

Syntactic sugar for InstanceModifier.thatCarefullySets. Use it like:

class Foo(ValuesMixin):
bar = 0

class Baz:
foo = Unique(Foo)

baz = Builder(Baz).withA(Foo.values(bar=2)).build()

class builders.modifiers.ClazzModifier
Bases: builders.modifiers.Modifier

Base class for Modifier siblings that act at classes.

Siblings should implement do method.

See builders.builder.Builder to see the actual invocation.

class builders.modifiers.ConstructModifier(construct)
Bases: builders.modifiers.ClazzModifier

Base class for ClazzModifier that work on a particular construct object within a class

Siblings should implement doApply method.

class builders.modifiers.Given(construct, value)
Bases: builders.modifiers.ConstructModifier

Supplied pre-defined value for a given construct.

class builders.modifiers.NumberOf(what, amount)
Bases: builders.modifiers.ConstructModifier

Sets the target number of builders.constructs.Collection elements to a given amount

class builders.modifiers.HavingIn(what, *instances)
Bases: builders.modifiers.ConstructModifier

Adds instances to a given builders.constructs.Collection.

If instance is a number, that much new instances are added to the Collection target number.

Else, that instance is added to the Collection as a pre-built one.

class builders.modifiers.OneOf(what, *modifiers)
Bases: builders.modifiers.ConstructModifier

Applies given modifiers to one of objects build by builders.construct.Collection.

class builders.modifiers.Enabled(what)
Bases: builders.modifiers.ConstructModifier

Turns on given builders.construct.Maybe once.

class builders.modifiers.Disabled(what)
Bases: builders.modifiers.Enabled

Like Enabled, but the other way around.

class builders.modifiers.LambdaModifier(construct, new_lambda)
Bases: builders.modifiers.ConstructModifier

Replaces function in builders.construct.Lambda with given new_lambda

12 Chapter 3. builders Package

builders, Release 1.2.8

builders.modifiers.Another(collection, *modifiers)
Add another instance to given collection with given mod

3.3. modifiers Module 13

builders, Release 1.2.8

14 Chapter 3. builders Package

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

15

builders, Release 1.2.8

16 Chapter 4. Indices and tables

Python Module Index

b
builders.builder, 9
builders.construct, 9
builders.modifiers, 11

17

builders, Release 1.2.8

18 Python Module Index

Index

A
Another() (in module builders.modifiers), 13
apply() (builders.modifiers.Modifier method), 11

B
build() (builders.builder.Builder method), 9
build() (builders.construct.Construct method), 9
Builder (class in builders.builder), 9
builders.builder (module), 9
builders.construct (module), 9
builders.modifiers (module), 11

C
ClazzModifier (class in builders.modifiers), 12
Collection (class in builders.construct), 10
Construct (class in builders.construct), 9
ConstructModifier (class in builders.modifiers), 12

D
Disabled (class in builders.modifiers), 12

E
Enabled (class in builders.modifiers), 12

F
flatten() (in module builders.builder), 9

G
Given (class in builders.modifiers), 12

H
HavingIn (class in builders.modifiers), 12

I
InstanceModifier (class in builders.modifiers), 11

K
Key (class in builders.construct), 11

L
Lambda (class in builders.construct), 11
LambdaModifier (class in builders.modifiers), 12

M
Maybe (class in builders.construct), 10
Modifier (class in builders.modifiers), 11

N
NumberOf (class in builders.modifiers), 12

O
OneOf (class in builders.modifiers), 12

P
Predefined (class in builders.construct), 10

R
Random (class in builders.construct), 10
Reused (class in builders.construct), 10

S
shouldRun() (builders.modifiers.Modifier method), 11

T
thatCarefullySets() (builders.modifiers.InstanceModifier

method), 11
thatDoes() (builders.modifiers.InstanceModifier method),

11
thatSets() (builders.modifiers.InstanceModifier method),

11

U
Uid (class in builders.construct), 11
Unique (class in builders.construct), 10
Uplink (class in builders.construct), 10

V
ValuesMixin (class in builders.modifiers), 11

19

builders, Release 1.2.8

W
withA() (builders.builder.Builder method), 9

20 Index

	Frequently Asked Questions
	How do I...

	Basic tutorial
	Describing data model
	Building model instance
	Modifying a tree

	builders Package
	builder Module
	construct Module
	modifiers Module

	Indices and tables
	Python Module Index

